

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

### Rapid Solvent Extraction of Uranium(VI) with *N*-Phenylbenzohydroxamic Acid

J. P. Shukla<sup>ab</sup>; Y. K. Agrawal<sup>a</sup>; K. Bhatt<sup>ac</sup>

<sup>a</sup> GOVERNMENT COLLEGE OF SCIENCE, JABALPUR, M. P., INDIA <sup>b</sup> Radiochemistry Division, Bhabha Atomic Research Centre, Bombay, India <sup>c</sup> Department of Chemistry, Government Polytechnic, Jabalpur, M. P., India

**To cite this Article** Shukla, J. P. , Agrawal, Y. K. and Bhatt, K.(1973) 'Rapid Solvent Extraction of Uranium(VI) with *N*-Phenylbenzohydroxamic Acid', *Separation Science and Technology*, 8: 3, 387 – 393

**To link to this Article:** DOI: 10.1080/00372367308058012

URL: <http://dx.doi.org/10.1080/00372367308058012>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**NOTE**

**Rapid Solvent Extraction of Uranium(VI) with  
*N*-Phenylbenzohydroxamic Acid**

J. P. SHUKLA,\* Y. K. AGRAWAL, and K. BHATT†

GOVERNMENT COLLEGE OF SCIENCE  
JABALPUR, M. P., INDIA

**Abstract**

A rapid method for the simultaneous solvent extraction and spectrophotometric determination of macro-amounts of hexavalent uranium with *N*-phenylbenzohydroxamic acid is described. The intense blood-red colored complex thus extracted from chloroform at pH ~ 4 absorbs at around 510 nm. A clean-cut separation from many commonly occurring metal ions is easily accomplished. Effects of acidity, reagent concentration, and diverse ions on the visible absorption of the extracted complex have also been investigated.

Analytical applications of *N*-phenylbenzohydroxamic acid (PBHA) have been extensively examined in recent years (1-3). It has been found to be an excellent reagent for the solvent extraction and colorimetric determination of many transition metal ions (1-8). No attempt seems to have been made for the extractive photometric determination of uranium(VI) with PBHA, especially from macroconcentrations to tracer level (only extraction). In this paper we report a rapid method for the simultaneous solvent extraction and spectrophotometric determination of macro-amounts of

\* Present address: Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Bombay-85, India

† Present address: Department of Chemistry, Government Polytechnic, Jabalpur, M. P., India

uranium with PBHA. The intense blood-red colored complex thus extracted from chloroform absorbs at around 510 nm where the reagent as well as the uranyl ion have no absorption. The advantage of the proposed method lies in the fact that a clean-cut separation from many commonly occurring metal ions is easily accomplished, and it is equally applicable for extraction of tracer amounts of uranium. Examinations on the effect of acidity, reagent concentration, and diverse ions on the absorption of uranyl-PBHA complex were carried out. Further, an attempt has been made to throw light on the stoichiometry of the extracted species.

## EXPERIMENTAL

### Apparatus

The spectra of the uranium(VI) complexes were scanned on a Carry-14 recording spectrophotometer and measurements at constant wavelengths were performed on a Beckmann DU quartz spectrophotometer with 10-mm matched silica cells. pH adjustments were done with a Radiometer pH meter.

### Reagents and Solutions

PBHA was synthesized by the procedure of Priyadarshini and Tandon (9). It was recrystallized before use from a mixture of benzene and petroleum ether and was dried in vacuum over  $P_2O_5$ . Its final purity was checked by melting point, elemental analyses, UV, and IR spectra. Generally a 0.1-*M* reagent solution in ethyl alcohol-free chloroform was used for all extraction work. Ethyl alcohol was removed by washing the commercial chloroform five or six times with about half its volume of water and distilled after drying over fused calcium chloride.

An aqueous solution of uranyl nitrate, pH adjusted to 4.0, whose uranium content was determined volumetrically, was used. Solutions of diverse ions were prepared from reagent grade salts using the procedure of West (10).

### Extraction Procedure

An aliquot of the solution containing about 7 mg/ml of uranium was taken and its pH adjusted to 4 with 0.01 *N* NaOH and 0.01 *N*  $HNO_3$  to a total volume of 10 ml. Then 10 ml of reagent solution was added, and the contents were shaken in a separatory funnel for 10 min. The phases were allowed to settle and separate, and the organic phase was carefully

transferred to a 25-ml flask after drying it over anhydrous sodium sulfate. Extraction was repeated twice to ensure complete recovery of uranium. Finally the extracts were diluted to 25 ml with chloroform. The absorbance of the red colored complex was measured at 510 nm against the reagent blank. The amount of uranium was then computed from the calibration curve.

## RESULTS AND DISCUSSION

### Absorption Spectrum

The visible absorption spectrum of a solution of U(VI)-PBHA complex ( $U = 7 \text{ mg/ml}$ ) extracted at pH 4.0 showed strong absorbance at 510 nm (Fig. 1). The reagent blank showed no absorbance at this wavelength. All absorbance measurements were therefore taken at 510 nm. Optical density-concentration graphs were plotted by carrying out measurements at 500, 510, and 520 nm; they showed that the colored chloroform extracts obey Beer's law within the usual 1 to 5% error of photometric measurements.

### Extraction as a Function of pH

The liquid-liquid extraction behavior of uranium(VI)-PBHA system was studied in the pH range from 2.0 to 4.5 (Table 1, Fig. 2). The results given in Table 1 show that the extraction commenced at pH 2.0 and it was quantitative at around pH 4. Extraction sharply increased to about 80% when pH was raised by approximately 1.5 units. The extraction curve remains almost constant from pH 4.0 to 4.5. Extractions at higher pH than 4.5 were deliberately avoided as to preclude the hydrolysis of the uranyl ion (11). The colored chelate was formed instantaneously and was stable at least for 24 hr if prepared in alcohol-free chloroform.

### Effect of Reagent Concentration

Hexavalent uranium was extracted at pH 4.0 with varying volume and concentration of the reagent (Table 2). The results indicate that a single extraction with 10 ml of 0.1  $M$  PBHA was quite adequate for quantitative extraction, while extraction was incomplete with 0.005, 0.01, and 0.015  $M$  reagent solutions. Larger excesses of reagent could be used without any difficulty. In practice, 10 ml of 0.1  $M$  PBHA was always used for extraction purposes.

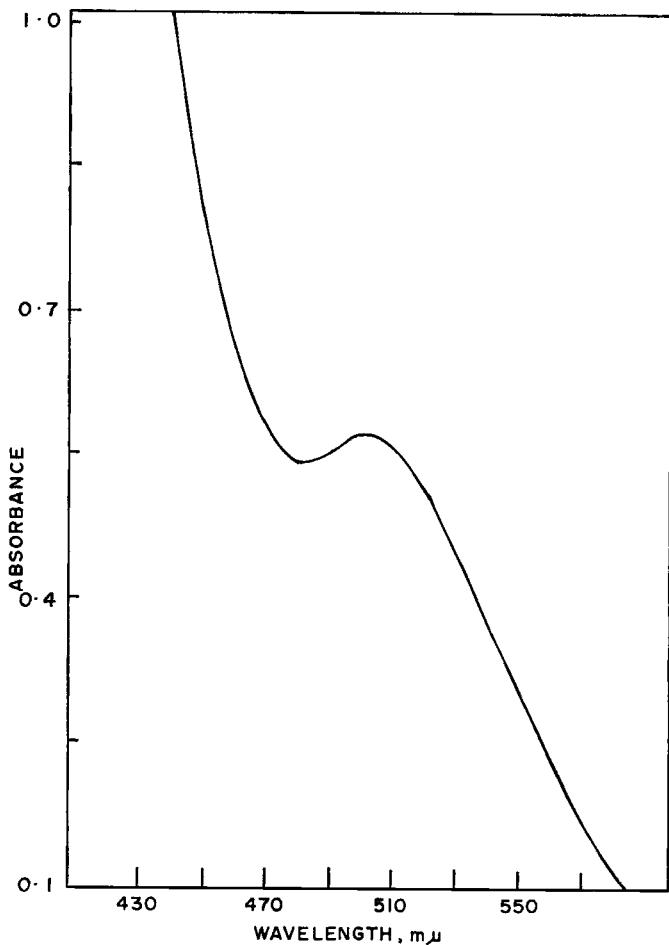



FIG. 1. Absorption spectra of U(VI)-PBHA chelate.

TABLE 1  
Extraction of Uranium (VI)-PBHA Complex as a Function of pH

| pH  | Extraction (% E) | Distribution ratio, D |
|-----|------------------|-----------------------|
| 2.0 | 2                | 0.02                  |
| 2.5 | 18               | 0.21                  |
| 3.0 | 43               | 0.76                  |
| 3.5 | 77               | 3.36                  |
| 3.8 | 90               | 8.55                  |
| 4.0 | 100              | $\infty$              |
| 4.2 | 100              | $\infty$              |
| 4.5 | 100              | $\infty$              |

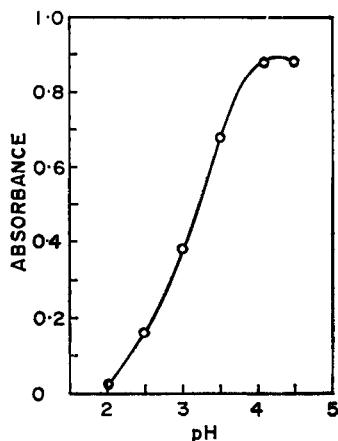



FIG. 2. Extraction as a function of pH.

### Effect of Diverse Ions

In order to examine the utility of this method in the presence of other ions, their interference was studied. At first the effect of various ions on the uranyl-PBHA absorption maximum at 510 nm was investigated. Table 3 summarizes the absorbancy and the position of the absorption maximum. Moderate amounts of many commonly associated ions with uranium were tolerable. The ions showing strong interference include cerium(IV), cobalt(II), molybdenum(VI), titanium(IV), and vanadium(V).

TABLE 2  
Effect of Reagent Concentration  
U(VI): 10.9 mg/10 ml, pH 4.0

| PBHA concentration (M) | PBHA added (ml) | Absorbance at 510 nm |
|------------------------|-----------------|----------------------|
| 0.005                  | 5               | 0.06                 |
| 0.01                   | 1               | 0.05                 |
|                        | 5               | 0.14                 |
|                        | 10              | 0.24                 |
| 0.015                  | 5               | 0.20                 |
| 0.10                   | 2               | 0.48                 |
|                        | 4               | 0.58                 |
|                        | 6               | 0.60                 |
|                        | 10              | 0.63                 |
| 0.20                   | 2               | 0.63                 |
|                        | 5               | 0.62                 |

TABLE 3  
Effect of Diverse Ions. U(VI): 11.5 mg/10 ml, pH 4.0

| Ion                            | Added as                          | Amount added (mg) | Absorbance | Max absorbance (nm) |
|--------------------------------|-----------------------------------|-------------------|------------|---------------------|
| Cation                         |                                   |                   |            |                     |
| Al <sup>3+</sup>               | Al(NO <sub>3</sub> ) <sub>3</sub> | 30                | 0.70       | 510 <sup>a</sup>    |
| Ba <sup>2+</sup>               | BaCl <sub>2</sub>                 | 30                | 0.71       | 510                 |
| Ca <sup>2+</sup>               | CaCl <sub>2</sub>                 | 30                | 0.70       | 510                 |
| Co <sup>2+</sup>               | CoCl <sub>2</sub>                 | 30                | 0.41       | 510                 |
| Ce <sup>4+</sup>               | Ce(SO <sub>4</sub> ) <sub>2</sub> | 20                | Ppt        | —                   |
| Ni <sup>2+</sup>               | NiSO <sub>4</sub>                 | 75                | 0.71       | 510                 |
| NH <sub>4</sub> <sup>+</sup>   | NH <sub>4</sub> Cl                | 50                | 0.71       | 510                 |
| Pb <sup>2+</sup>               | PbCl <sub>2</sub>                 | 100               | 0.70       | 510                 |
| MoO <sub>4</sub> <sup>2-</sup> | Na <sub>2</sub> MoO <sub>4</sub>  | 5                 | 0.59       | 510                 |
| Ti <sup>4+</sup>               | TiOCl <sub>2</sub>                | 5                 | 0.61       | 510                 |
| Zn <sup>2+</sup>               | ZnCl <sub>2</sub>                 | 20                | 0.70       | 510                 |
| Anion                          |                                   |                   |            |                     |
| NO <sub>3</sub> <sup>-</sup>   | NaNO <sub>3</sub>                 | 30                | 0.70       | 510                 |
| ClO <sub>4</sub> <sup>-</sup>  | HClO <sub>4</sub>                 | 30                | 0.70       | 510                 |
| SO <sub>4</sub> <sup>2-</sup>  | Na <sub>2</sub> SO <sub>4</sub>   | 30                | 0.70       | 510                 |

<sup>a</sup> Average of 3 repetitive analyses of the same sample.

### Extraction Time and Stability of Color

Variation from 3 to 30 min in the shaking period revealed that 95% extraction of the colored complex from the aqueous phase occurred in 3 min whereas beyond 5 min quantitative extraction could be accomplished as per the extraction procedure. The chloroform extracts of the complex were quite stable over a week.

### Nature of the Extracted Species

To understand the nature and composition of the extracted species, an attempt was made to isolate the solid complex of  $\text{UO}_2^{2+}$  with PBHA. The compound obtained by slowly evaporating off the organic phase was analyzed by microanalysis for C, H, and N, and content was determined volumetrically by Jone's reductor method. The results correspond to the formula  $\text{UO}_2(\text{PBHA})_2 \cdot 2\text{H}_2\text{O}$ . The water content was also confirmed by Karl-Fischer titration as well as by thermal analysis of the solid product. The IR pattern showed the presence of water molecules and the  $\text{UO}_2^{2+}$  band at  $910\text{ cm}^{-1}$  apart from C=O and NO stretching vibration peaks at  $1590$  and  $925\text{ cm}^{-1}$ , respectively.

### REFERENCES

1. A. K. Majumdar, *N-Benzoylphenylhydroxylamine and Its Analogues*, Pergamon, London, 1971.
2. A. D. Shendrikar, *Talanta*, **16**, 51 (1969).
3. A. K. De, S. M. Khopkar, and R. A. Chalmers, *Solvent Extraction of Metals*, Van Nostrand, London, 1970.
4. J. Stary, *The Solvent Extraction of Metal Chelates*, Pergamon, Oxford, 1964, pp. 123-127.
5. I. P. Alimarin, F. P. Sudakov, and B. G. Golovkin, *Russ. Chem. Rev.*, **31**, 466 (1962).
6. A. M. G. Macdonald, *Ind. Chem.*, **36**, 512 (1960); **37**, 30 (1961).
7. W. C. Johnson, *Organic Reagents for Metals*, Vol. 2, Hopkin and Williams, Essex, 1964, p. 10.
8. U. Priyadarshini and S. G. Tandon, *Anal. Chem.*, **33**, 435 (1961).
9. U. Priyadarshini and S. G. Tandon, *J. Chem. Eng. Data*, **12**, 143 (1967).
10. P. W. West, *J. Chem. Educ.*, **18**, 528 (1941).
11. S. Ahrland, *Acta Chem. Scand.*, **3**, 374 (1949).

Received by editor August 25, 1972